by Yvan Barbay, Jacques Ioset, and Raymond Roulet*

Institut de chimie minérale et analytique de l'Université, 3, place du Château, CH-1005 Lausanne

and Gervais Chapuis

Institut de cristallographie de l'Université de Lausanne, Bâtiment des Sciences Physiques, CH-1015 Lausanne

(25.XI.85)

The product of the reaction of [Fe(benzalacetone)(CO)₃] with 7,7-dimethoxy-5,6-dimethylidenebicyclo-[2.2.1]hept-2-ene is tricarbonyl-[2, 3- η :O- σ -(7,7-dimethoxy-5,6-dimethylidenebicyclo[2.2.1]hept-2-ene)]iron. Crystals are monoclinic, space group $P2_1/c$ with a = 6.612(2), b = 11.610(4), c = 18.604(6) Å, and $\beta = 95.91(2)^\circ$. The coordination at the metal atom is trigonal bipyramidal. The equatorial sites are occupied by 2 CO's and by the midpoint of the endocyclic double bond of the organic ligand. The axial sites are occupied by one CO group and the O-atom of one MeO group of the C(OMe)₂ bridge. It is an uncommon example of a d⁸ metal carbonyl complex bearing an O-bonded ligand.

1. Introduction. – We have reported recently on the synthesis and reactivity of d⁶ and d⁸ metal carbonyl complexes of 7,7-dimethoxy-5,6-dimethylidenebicyclo[2.2.1]hept-2-ene [1]. Among the 30 compounds reported in [1], we have now unambiguous indication that the iron complex 1 and the ruthenium complex 2, originally formulated as $[M(CO)_4(\eta^2 - olefin)]$ complexes, are in fact $[M(CO)_3(\eta^2: O - \sigma - olefin)]$ complexes as indicated in the *Formulae*. These are uncommon examples of d⁸ metal carbonyl complexes bearing an

O-bonded ligand [2]. The elemental-analysis data reported earlier for 1 and 2 fits either formulation within experimental error. The reported mass spectra for 1 and 2 indeed showed weak peaks corresponding to an [M(CO)₄(olefin)] molecular ion, but these have since been identified as impurity peaks. Given the correct formulation of 1 and 2, the ¹H- and ¹³C-NMR spectra are surprisingly similar to those of 3–5 in terms of the $\delta_{\rm H}$ and $\delta_{\rm C}$ values for the two MeO groups. It was this similarity which gave rise to the confusion. The 3 ν (CO) bands observed in the IR spectra of 1 both at 100 and 300 K were assumed to be compatible with a trigonal bipyramidal [M(CO)₄(olefin)] complex having the olefin coordinated in an axial site with local C_{3v} symmetry. Since all previously reported [M(CO)₄(olefin)] complexes have the olefin in the equatorial plane [3], the molecular structure of 1 was determined by X-ray analysis.

2. Crystal Structure of Complex 1. – Single crystal diffraction intensities were collected on a Syntex $P2_1$ auto-diffractometer. An absorption correction based on the Gaussian integration method was applied. Table 1 gives the crystallographic data and data collection procedures using the 'X-ray 72 system' of programs [4]. Atomic-scattering factors for neutral C, O, Fe [5] and H [6], and anomalous coefficients for Fe [7] were included in the structure-factor calculations. The Fe-atoms were located on the Patterson map and the remaining non-H-atoms were identified on successive Fourier maps. All H-atoms were found on a difference Fourier synthesis after preliminary refinement to R = 0.055, and were included in the structure-factor calculations. The largest peaks in the final difference synthesis were ca. $0.4 \text{ e}^{-}/\text{Å}^{3}$ in the vicinity of the heavy atoms.

Atomic parameters and calculated bond lengths and angles are listed in *Tables 2–4*. A view of the molecular structure prepared by the program ORTEP [8] is given in the *Figure* where the numbering scheme is indicated. The geometry at the metal atom is trigonal bipyramidal. The equatorial sites are occupied by 2 CO's and the midpoint of the endocyclic double bond of the organic ligand. The axial sites are occupied by one CO group and the O-atom of one MeO group of the $C(OMe)_2$ bridge. The double bond at C(2),C(3) is practically in the equatorial plane, the dihedral angle between planes Fe,C(2),C(3) and *a*,Fe,C(12),C(13)¹) being 2.5(5)°. The 'tilt' of the olefin with respect to the equatorial plane is $108.8(5)^\circ$, as given by the dihedral angle between planes Fe,C(2),C(3) and

Figure. *Perspective view of the molecular structure of* **1**. H-atoms are omitted for clarity.

Table 1. Crystal Data of 1, Intensity Collection, and Refinement

Formula	$C_{14}H_{14}O_5Fe$	Min. and max. transmission	0.869 and 0.912
Molecular mass	318.1	Scan type	θ (crystal) –2 θ (counter)
Dimensions [mm]	$0.21 \times 0.14 \times 0.63$	Scan width	$[2\theta(K\alpha_2) + 1.0] - [2\theta(K\alpha_1) - 1.0]^\circ$
Crystal system	Monoclinic	Scan speed	Variable (2 to 10°/min)
Space group	$P2_{1}/c$	$(\sin \theta / \lambda)_{max}$	0.54
a [Å]	6.612(2)	Background from	Scan profile interpretation [9]
<i>b</i> [Å]	11.610(4)	Standard reflections	3, measured after each
c [Å]	18.604(6)		97 reflections
β [°]	95.91(2)		(0,0,8;1,5,1;3,0,0)
$V[Å^3]$	1420.7(7)	20 limits [°]	3.5-45
Z	4	Data collected	$\pm h, \pm k, \pm l$
$d_{\rm obs} [\rm g \ \rm cm^{-3}]$	1.48(2)	No. of unique reflections	1869
$d_{\text{calc}} [\text{g cm}^{-3}]$	1.49	No. of reflections $(I > 3\sigma)$	1247
$\mu [cm^{-1}]$	11.06	Solution method	Patterson and Fourier
Radiation	Mo-Ka, Nb-filtered	Refinement method	Block-diagonal least-squares
	$(\lambda = 0.71069 \text{ Å})$	Function minimised	$\Sigma w(F_o - F_c)^2$
Systematic absences	$h \ 0 \ l : l = 2n + 1$	W'	$1/\sigma^2$
	$(0 \ 0 \ l : l = 2n + 1)$	R	0.031
	0 k 0: k = 2n + 1	R _w	0.027
F ₀₀₀	656	Goodness of fit	1.51

¹) a is the midpoint of the C(2),C(3) bond.

Atom	<i>x</i>	У	Z	
Fe	0.20406(7)	0.29315(4)	0.41586(3)	0.0489(3)
O(1)	0.0799(3)	0.2271(2)	0.3196(1)	0.0445(1)
O(2)	0.0486(3)	0.0523(2)	0.2585(1)	0.0491(1)
O(3)	-0.1680(4)	0.3857(3)	0.4682(2)	0.086(1)
O(4)	0.3923(5)	0.4805(3)	0.3397(2)	0.101(1)
O(5)	0.4107(4)	0.3571(3)	0.5539(2)	0.090(1)
C(1)	0.0902(5)	0.0472(3)	0.3893(2)	0.047(1)
C(2)	0.2163(5)	0.1219(3)	0.4433(2)	0.053(1)
C(3)	0.3909(5)	0.1549(3)	0.4098(2)	0.048(1)
C(4)	0.3670(5)	0.0982(3)	0.3361(2)	0.044(1)
C(5)	0.3912(5)	-0.0298(3)	0.3487(2)	0.051(1)
C(6)	0.2099(5)	-0.0635(3)	0.3845(2)	0.049(1)
C(7)	0.1361(4)	0.1065(3)	0.3198(2)	0.042(1)
C(8)	0.5423(7)	-0.0961(5)	0.3323(2)	0.067(2)
C(9)	0.1608(7)	-0.1653(4)	0.4075(2)	0.068(2)
C(10)	-0.1341(6)	0.2492(5)	0.2967(3)	0.062(2)
C(11)	0.1278(8)	0.0881(5)	0.1923(2)	0.062(2)
C(12)	-0.0286(6)	0.3468(3)	0.4449(2)	0.057(1)
C(13)	0.3200(6)	0.4065(4)	0.3688(2)	0.062(2)
C(14)	0.3291(5)	0.3331(3)	0.4981(2)	0.061(2)
H(1)	-0.044(4)	0.038(2)	0.397(1)	0.036(8)
H(2)	0.216(5)	0.109(3)	0.487(2)	0.05(1)
H(3)	0.514(4)	0.159(2)	0.435(2)	0.043(9)
H(4)	0.442(4)	0.132(2)	0.304(2)	0.036(8)
H(5)	0.649(5)	-0.061(3)	0.310(2)	0.06(1)
H(6)	0.539(5)	-0.175(4)	0.347(2)	0.08(1)
H(7)	0.250(5)	-0.235(4)	0.402(2)	0.07(1)
H(8)	0.034(5)	-0.182(3)	0.428(2)	0.07(1)
H(9)	-0.145(5)	0.327(4)	0.296(2)	0.07(1)
H(10)	-0.161(5)	0.213(3)	0.251(2)	0.08(1)
H(11)	-0.208(4)	0.224(3)	0.336(2)	0.06(1)
H(12)	0.123(6)	0.167(4)	0.189(2)	0.10(2)
H(13)	0.036(6)	0.059(3)	0.153(2)	0.09(1)
H(14)	0.264(6)	0.058(4)	0.190(2)	0.09(1)

Table 2. List of Atomic Parameters for Complex 1^a)

^a) For numbering, see the *Figure*.

Table 3. Bond Lengths (Å) in 1^a)

Fe-C(2)	2.052(4)	C(4)-C(7)	1.523(4)
Fe-C(3)	2.036(4)	C(5)-C(6)	1.482(5)
e = O(1)	2.041(2)	C(5)-C(8)	1.323(6)
Fe-C(12)	1.794(4)	C(6)-C(9)	1.309(6)
Fe-C(13)	1.796(4)	C(7)-O(1)	1.448(4)
e-C(14)	1.727(4)	C(7)-O(2)	1.377(4)
C(1) - C(2)	1.512(5)	C(10)-O(1)	1.458(4)
C(1) - C(6)	1.517(5)	C(11)-O(2)	1.448(5)
C(1) - C(7)	1.523(5)	C(12)-O(3)	1.151(5)
C(2) - C(3)	1.420(5)	C(13)-O(4)	1.146(6)
C(3)-C(4)	1.515(5)	C(14)-O(5)	1.153(5)
C(4)-C(5)	1.510(5)		
C(2) - C(3) C(3) - C(4) C(4) - C(5) The e.s.d. of the las	1.420(5) 1.515(5) 1.510(5) t significant digit is given in part	C(13)-O(4) C(14)-O(5) entheses.	

C(2)-C(1)-C(6)	105.6(3)	O(1)-C(7)-O(2)	110.7(3)
C(2)-C(1)-C(7)	99.2(3)	C(10) - O(1) - C(7)	114.3(3)
C(6) - C(1) - C(7)	100.5(3)	C(11) - O(2) - C(7)	114.5(3)
C(1)-C(2)-C(3)	106.3(3)	C(7)–O(1)–Fe	106.3(2)
C(2) - C(3) - C(4)	105.5(3)	O(3)-C(12)-Fe	174.3(3)
C(3)-C(4)-C(5)	106.6(3)	O(4)-C(13)-Fe	178.5(4)
C(3) - C(4) - C(7)	99.3(3)	O(5)-C(14)-Fe	178.2(4)
C(5) - C(4) - C(7)	100.4(3)	O(1)-Fe- $C(12)$	96.6(1)
C(4) - C(5) - C(6)	104.6(3)	O(1) - Fe - C(13)	90.0(1)
C(4) - C(5) - C(8)	127.4(4)	O(1) - Fe - C(14)	172.4(1)
C(6) - C(5) - C(8)	128.0(4)	C(12)-Fe-C(13)	108.3(2)
C(1) - C(6) - C(5)	104.7(3)	C(12)-Fe-C(14)	89.2(2)
C(1) - C(6) - C(9)	126.6(4)	C(13)-Fe-C(14)	92.7(2)
C(5)-C(6)-C(9)	128.6(4)		
^a) The esd of the l	ast significant digit is given in pare	entheses	

Table 4. Dona Angles () in 1	Tal	ble	4.	Bond	Angl	es (°) in 1	ła)
-------------------------------	-----	-----	----	------	------	------	---------	-----

The e.s.d. of the last significant digit is given in parentneses.

C(1),C(2),C(3),C(4). As expected, the H-atoms at C(2) and C(3) are pushed away from the metal by ca. 30° with respect to plane C(1), C(2), C(3), C(4). Coordination at O(1) does not significantly distort the bicyclic skeleton (see Table 4). The torsion angles C(11)-O(2)-C(7)-O(1) and C(10)-O(1)-C(7)-O(2) are 68(2) and 43(2)°, respectively, the smaller values being probably due to repulsion between the Me group and the Featom. No structures of comparable d⁸ metal carbonyl were found in the Cambridge Data Files. However, the structure of tetracarbonyl(7,7-dimethoxynorborn-2-ene)chromium shows another example in which the alkoxynorbornene acts as a bidentate ligand [9].

Given the correct formulation of 1, the two diiron isomers of the ligand 7,7-dimethoxy-5,6-dimethylidenebicyclo[2.2.1]hept-2-ene reported in [1] should be formulated as hexacarbonyl-cis- μ -[(1R,2S,3R,4S,5R,6S)-2,3- η : O- σ : C,5,6, C- η -(7,7-dimethoxy-5,6-dimethylidenebicyclo[2.2.1]hept-2-ene)]diiron and hexacarbonyl-trans- μ -[(1R,2S,3R,4S, 5S, 6R)-2, $3-\eta$: $O-\sigma$: $C, 5, 6, C-\eta$ -(7,7-dimethoxy-5,6-dimethylidenebicyclo[2.2.1]hept-2ene)]diiron.

A variable temperature and pressure NMR study of the fluxional behaviour of 1 and 2 is under study.

We thank the Swiss National Science Foundation for financial support.

Supplementary Material. Lists of observed and calculated structure factors, thermal parameters, bond lengths and angles involving H-atoms, and least-square planes are available on request from R.R.

REFERENCES

- [1] J. Ioset, R. Roulet, Helv. Chim. Acta 1985, 68, 236.
- [2] P. Laszlo, A. Stockis, J. Organomet. Chem. 1976, 117, C41.
- [3] 'Comprehensive Organometallic Chemistry', Eds. G. Wilkinson, F.G.A. Stone, and E.W. Abel, Pergamon Press, Oxford, 1983, Vol. 4, p. 386.
- [4] J. M. Stewart, F. A. Kundell, J. C. Baldwin, X-Ray 72, version of June 1972, Technical Report TR-192 of the Computing Science Center, University of Maryland (as modified by D. Schwarzenbach).
- [5] D.T. Cromer, J.B. Mann, Acta Crystallogr., Sect. A 1968, 24, 321.
- [6] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Phys. Chem. 1965, 42, 3175.
- [7] D.T. Cromer, Acta Crystallogr. 1965, 18, 17.
- [8] C.K. Johnson, ORNL-3794, Oak Ridge National Laboratory, 1971.
- [9] P. Brotherton, D. Wege, A. H. White, E. N. Maslen, J. Chem. Soc., Dalton Trans. 1974, 1876.